
FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSEMATRIX�ALI PINARy AND VIRGINIA VASSILEVSKAzAbstrat. Many appliations of sienti� omputing rely on omputations on sparse matries,thus the design of eÆient implementations of sparse matrix kernels is ruial for the overall eÆ-ieny of these appliations. Due to the high ompute-to-memory ratio and irregular memory aesspatterns, the performane of sparse matrix kernels is often far away from the peak performane on amodern proessor. Alternative data strutures have been proposed, whih split the original matrixA into Ad and As, so that Ad ontains all dense bloks of a spei�ed size in the matrix, and Asontains the remaining entries. This enables the use of dense matrix kernels on the entries of Adproduing better memory performane. In this work, we study the problem of �nding a maximumnumber of nonoverlapping retangular dense bloks in a sparse matrix, whih has not been studiedin the sparse matrix ommunity. We show that the maximum nonoverlapping dense bloks problemis NP-omplete by using a redution from the maximum independent set problem on ubi planargraphs. We also propose a 2=3-approximation algorithm for 2� 2 bloks that runs in linear time inthe number of nonzeros in the matrix. We disuss alternatives to retangular bloks suh as diagonalbloks and ross bloks and present omplexity analysis and approximation algorithms.Key words. Memory performane, memory-eÆient data strutures, high-performane om-puting, sparse matries, independent sets, NP-ompleteness, approximation algorithms.1. Introdution. Sparse matries lie in the hearts of many omputation-intensiveappliations suh as �nite-element simulations, deision support systems in manage-ment siene, power systems analysis, iruit simulations, and information retrieval.The performanes of these appliations diretly rely on the performanes of the em-ployed sparse matrix kernels . The memory performane of sparse matrix operationson modern proessors however, is often a bottlenek due to the irregular memory-aess patterns of sparse matrix operations, and extra memory load operations re-quired to exploit sparsity. The memory-performane bottlenek is beoming moreruial everyday, arguably beoming the most important problem in high perfor-mane omputing. To overome this memory bottlenek designing alternative datastrutures for sparse matries that are memory friendly has been investigated. Oneommon approah in these e�orts is to exploit the speial substrutures in a sparsematrix, suh as small dense matries, to derease the number of extra load operations.In this paper, we study the problem of �nding a maximumnumber of nonoverlappingsubstrutures in a sparse matrix, with the objetive of improving the e�etiveness ofalternative sparse matrix data strutures that exploit dense bloks.Conventional data strutures for sparse matries have two omponents: an ar-ray that stores oating-point entries of the matrix and arrays that store the nonzerostruture (i.e., pointers to the loations of the numerial entries). Exploiting spar-sity invariably requires using pointers, but pointers often lead to poor memory per-formane. One reason for the poor memory performane is that pointers ause anirregular memory aess pattern and thus poor spatial loality. Another importantreason, whih is often overlooked, is the extra load operations. Eah operation on anonzero entry requires loading the loation of that nonzero before loading the atual�This work was supported by the Diretor, OÆe of Siene, Division of Mathematial, Infor-mation, and Computational Sienes of the U.S. Department of Energy under ontrat DE-AC03-76SF00098.yCorresponding author. Computational Researh Division, Lawrene Berkeley National Labora-tory, (apinar�lbl.gov).z Computer Siene Department, Carnegie Mellon University (virgi�s.mu.edu).1



2 V. Vassilevska and A. Pinar0BBB� x x xx xx x x xx x x 1CCCA = 0BBB� x xx x x xx x 1CCCA + 0BBB� xx x x 1CCCAA = A12 + A11Fig. 1.1. Matrix splitting.oating point number. For instane, sparse matrix vetor multipliation, whih is oneof the most important kernels in numerial algorithms, requires three load operationsfor eah multiply-and-add operation. And it has been observed that this overheadmight be as ostly as the oating point operations [5℄.Reent studies have investigated improvingmemory performane of sparse matrixoperations by reduing the number of extra load operations [5, 8, 9, 10℄. Toledo [9℄studied splitting the matrix as A = A12+A11, where A12 inludes 1� 2 bloks of thematrix (two nonzeros in onseutive positions on the same row), and A11 overs theremaining nonzeros, as illustrated in Fig. 1.1. Notie that it is suÆient to store apointer for eah blok in A12. In [8℄, P�nar and Heath studied the reordering problemto inrease the sizes of these bloks. They proposed a graph model to redue thematrix ordering problem to the traveling salesperson problem. Vudu et al. studiedvarious bloking tehniques to derease load operations, and improve ahe utiliza-tion [10℄. Signi�ant speedups in large experimental sets have been observed, whihgives motivation to searh for larger bloks in the matrix for further improvementsin performane. Splitting operation an be generalized to exploit arbitrary substru-tures. For instane, one an split the matrix into A = Ad +As, where Ad ontains allspei�ed substrutures, and As ontains the remaining entries. Clearly, for a spei-�ed substruture, having more entries in Ad merits fewer load operations, thus bettermemory performane. This alls for eÆient algorithms to �nd a maximum numberof nonoverlapping substrutures in a sparse matrix. A greedy algorithm is suÆientto �nd a maximum number of nonoverlapping m � n dense matries when m = 1 orn = 1. However, this problem is muh harder when m;n � 2.In this work, we study the problem of �nding a maximum number of nonover-lapping substrutures of a sparse matrix, whih we all the maximum nonoverlappingsubstrutures problem. We fous on m � n dense bloks as a substruture, due totheir availability in sparse matries arising in various appliations, and e�etivenessin dereasing extra load operations. We all this problem the maximum nonoverlap-ping dense bloks problem. In the next setion, we de�ne the problem formally andinvestigate its relation to the maximum independent set problem. We de�ne a lassof graphs where the independent set problem is equivalent to the maximum nonover-lapping dense bloks problem. In Setion 3, we use this relation to prove that themaximum nonoverlapping dense bloks problem is NP-omplete. Our proof uses aredution from the maximum independent set problem on ubi planar graphs andadopts orthogonal drawings of planar graphs. Setion 4 presents an approximationalgorithm for the problem. Sine we are motivated by improvingmemory performaneof sparse matrix operations, we are interested in fast and e�etive heuristis for thepreproessing ost to be amortized over the speedups in subsequent sparse matrixoperations. Our algorithms require only linear time and spae, and generate solutions



Finding dense bloks of a sparse matrix 3whose sizes are within 2=3 of the optimal. In Setion 5, we disus alternative patternsto retangular bloks. We show that the problem of �nding diagonal bloks an beredued to that of �nding retangular bloks, and thus the problem is NP-omplete,and our 2/3-approximation algorithm is valid for diagonal bloks as well. We alsodisuss the ross bloks, prove that �nding a maximum set of nonoverlapping rossbloks is NP-omplete, and generalize our results for variations of the ross blok. Wepresent some open problems in Setion 6 and onlude with Setion 7.The problem of �nding nonoverlapping dense bloks of a sparse matrix has notbeen studied in the sparse-matrix ommunity. We have been reently aware of thework by Berman et al. [2℄, where a similar problem is disussed as the optimal tilesalvage problem. In the optimal tile salvage problem, we are given an pN � pNregion of the plane tiled with unit squares, some of whih have been removed. Thetask is to �nd a maximumnumber of funtional nonoverlappingm�n tiled retangles.The di�erene between our problem and the optimal tile salvage problem is that inthe tile salvage problem the tiles are allowed to be in any orientation (m�n or n�m),whereas in our ase the orientation is �xed (only m� n). The two problems oinidein the ase of square dense bloks. Berman et al. proved the NP-ompleteness ofthe tile salvage problem, however their proof exploits the exibility in the orientationof the dense blok, and thus our proof is signi�antly di�erent. Berman et al. alsodesribe an (1 � �)-approximation algorithm, whih would work for square bloks,for � = O(1=pÆ logM ), where M is the optimal solution value. Their algorithmis based on maximum planar H-mathing whih runs in O(N1+Æ) steps for smallÆ > 0. Baker [1℄ also has an algorithm for the ase of square bloks, whih runsin O(8kN )-time and O(4kN ) spae and produes a (k � 1)=k-approximation. Bothof these algorithms however are omplex and hard to implement. The greedy 2=3-approximation algorithms we propose are very simple. It requires linear time andspae, with very small onstant fators in the time and spae bounds. Our algorithmrequires only one pass through the matrix, and thus is I/O-eÆient.2. Preliminaries. In this setion we de�ne the problems formally, and presentde�nitions and some preliminary results that will be used in the following setions.2.1. ProblemDe�nition. This work investigates the problem of �nding a max-imum number of nonoverlapping matrix substrutures of presribed form and orien-tation.Definition 2.1. An m � n pattern is a 0-1 m � n matrix �. An oriented �-substruture of a matrix A is an m � n submatrix M in A so that M (i; j) 6= 0 if�(i; j) = 1 for 1 � i � m, and 1 � j � n. Two substrutures M and N overlap ifthey share nonzero entry e in M with oordinates (iM ; jM) in M and (iN ; jN ) in Nand �(iM ; jM) = �(iN ; jN ) = 1.Given a partiular pattern �, we de�ne themaximum nonoverlapping �-substrutures(MNS) problem as follows.Given an M �N matrix A and integer K, does A ontain K disjoint�-substrutures?In this paper, we mostly fous on dense bloks, due to their simpliity, and theire�etiveness in speeding up sparse matrix operations. A dense blok of a matrix is asubmatrix of spei�ed size all of whose entries are nonzero, i.e., it is a �-substruturewhere � is the all 1s matrix. We identify a dense blok with its upper left orner.Two bloks overlap if they share a matrix entry. Formally,



4 V. Vassilevska and A. PinarGiven an M � N matrix A = (aij), we say bij is an m � n denseblok in A i� akl 6= 0 for all k and l suh that i � k < i + m � Mand j � l < j + n � N . Two m � n bloks bij and bkl overlap i�i � k < i+m and j � l < j +n, or k � i < k+m and l � j < l+n.We de�ne the maximum nonoverlapping dense bloks (MNDB) problem, whihrestrits the MNS problem to dense bloks as follows.Given an M �N matrix A, positive integers m and n that de�ne theblok size, and a positive integer K, does A ontain K disjoint m�ndense bloks?2.2. Intersetion Graphs. It is easy to �nd all spei�ed patterns in a matrix,however what we need is a subset with nonoverlapping bloks. In this sense, the MNSproblem is related to the maximum independent set (MIS) problem, whih is de�nedas �nding a maximum ardinality subset of verties I of a graph G, suh that no twoverties in I are adjaent. Below we de�ne an intersetion graph, whih reveals therelation between the independent set and the nonoverlapping bloks problems morelearly.Definition 2.2. A graph G is an intersetion graph of the �-substrutures of amatrix A if there is a bijetion � between the verties of G and the substrutures ofA, suh that there is an edge in G between �(s1) and �(s2) if and only if s1 and s2overlap in A.We will use G(A;m; n) to refer to the intersetion graph of dense m�n bloks inmatrix A. A maximum independent set on G(A;m; n) gives a maximum number ofnonoverlapping bloks in A, thus the MNDB problem an be redued to the maximumindependent set problem, whih is known to be NP-omplete [4℄. However it is impor-tant to note that the blok intersetion graphs have speial strutures, whih an beexploited for eÆient solutions. For instane, a greedy algorithm is suÆient to �nda maximum number of nonoverlapping 1� n and m� 1 bloks, sine these problemsredue to a family of disjoint maximum independent set problems on interval graphs.In the remainder of this setion, we de�ne the lass of graphs that onstitute blokintersetion graphs. An intersetion graph of a set of 2� 2 dense bloks is an induedsubgraph of the so alled X-grid whih onsists of the usual 2 dimensional grid, anddiagonals for eah grid square. In general, the intersetion graph of a set of m � ndense bloks is an indued subgraph of the Xmn grid. Below, we �rst de�ne an Xmngrid, and then restrit the de�nition to de�ne the graph lass X�mn that representgraphs that an be an intersetion graph for a matrix.Definition 2.3. An M � N Xmn grid is a graph with a vertex set V and anedge set E, so that� V = fvij : 1 � i �M �m; 1 � j � N � n+ 1g� E = f(vij; vkl) : 1 � i; k � M � m + 1; 1 � j; l � N � n + 1 : ji � kj <m; jj � lj < ngIn an Xmn grid, vertex vij orresponds to the blok bij in the matrix, and edgesorrespond to all possible overlaps between bloks. Note that not all indued sub-graphs of the Xmn grid are intersetion graphs of a matrix. We de�ne a graph lassX�mn in whih eah graph orresponds to an intersetion graph G(A;m; n) of the set



Finding dense bloks of a sparse matrix 5of m� n dense bloks of a matrix A, and eah suh intersetion graph is in the lass.Definition 2.4. A graph G = (V;E) is in the graph lass X�mn if and only ifit is an indued subgraph of an Xmn grid and has the losure property so that vij 2 Vif 8i � k < i+m; j � l < j + n; 9vst : s � k < s +m and t � l < t+ nThe losure property enfores that there is a vertex in the graph for eah blok inthe matrix. Being an indued subgraph of an X grid guarantees that there is an edgefor eah overlap. The graphs in this lass are exatly the intersetion graphs of them� n bloks in a matrix, thus �nding a maximum independent set of a graph in thislass is equivalent to solving the MNDB problem of the orresponding dense matrixbloks. This laim is formalized by the following lemma.Lemma 2.1. An instane of the MNDB problem for �nding m�n nonoverlappingdense bloks in a matrix A is polynomially equivalent to an instane of MIS for a graphin X�mn.Proof. As we disussed earlier, the MNDB problem an be redued to the problemof �nding an independent set on its intersetion graph. Here we show the one-to-oneorrespondene between intersetion graphs, and graphs in X�mn. Remember thateah dense blok bij orresponds to the vertex vij in G(A;m; n). By de�nition of thelass X�mn, G(A;m; n) 2 X�mn, thus any instane of an MNDB problem an beredued to an independent set problem in a graph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i <k + m and l � j < l + n for some vertex vkl in G. Observe that any dense blok inA must be represented by a vertex in G due to the losure property. Also, for anytwo adjaent verties in G, orresponding bloks interset in A, and no other bloksoverlap, due to the de�nition of edges in Xmn. Thus, a maximum-ardinality subsetof nonoverlapping bloks in matrix A orresponds to a maximum independent set inG 2 X�mn.In this paper we will use the graph lass X�22 to prove the NP-ompleteness ofthe MNDB problem for 2� 2 bloks. Our proof an be generalized to arbitrary sizedbloks, showing the NP-ompleteness of the MNDB problem for m � n bloks, andhene the NP-ompleteness of the maximum independent set problem for graphs inlass X�mn.The following lemma shows that removing a subset of the verties along withtheir neighbors preserves the harateristis of the graph, providing the basis forgreedy approximation algorithms as will be presented in Setion 4.Lemma 2.2. Let G = (V;E) be a graph in X�mn, S � V a subset of verties,and N (S) = fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then thegraph G0 indued by V n (S [N (S)) is still in X�mn.Proof. Removing a vertex and its neighbors in G orresponds to removing allnonzeros in a bl ok in the orresponding matrix. The remaining graph is the inter-setion graph of the resulting matrix.2.3. Planar Graphs and Orthogonal Drawings. A graph G is planar if andonly if there exists an embedding of G on the sphere suh that no two edges have apoint in ommon besides the verties. G is ubi planar if every vertex has degree 3.An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensionalretangular grid suh that every vertex is mapped to a grid point and every edge ismapped to a ontinuous path of grid line segments onneting the end points of the
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2 Fig. 2.1. Planar orthogonal drawingedge. When G is planar, the edge paths do not ross. An example of orthogonalembedding of a planar graph is illustrated in Fig. 2.1. As seen in this �gure, we referto a grid point where an edge path hanges diretion as a bend. No two edges share agrid segment or a bend, and no edge path an go through a vertex unless this vertexis an end point of the edge orresponding to the path and is an end point of the pathitself. A mark in an orthogonal drawing of a graph is a grid point that an edge passesthrough,but not a vertex in the original graph. The following result has been reportedby de Fraysseix et al. [3℄, Kant [6℄, and Papakostas and Tollis [7℄.Theorem 2.3. Every planar graph G with vertex degree at most 4 an be drawnorthogonally with at most bn2 + 1 bends on an bn2  � bn2  grid in linear time.In partiular, this shows that every ubi planar graph G = (V;E) an be embed-ded orthogonally in an O(jV j)�O(jV j) grid in polynomial time. The NP-ompletenessproof in the next setion uses a redution from the maximum independent set (MIS)problem on ubi planar graphs, and adopts orthogonal drawings.3. Complexity. This setion proves that the MNDB problem is NP-ompletefor 2�2 bloks. We use a redution from the independent set problem on ubi planargraphs, whih is NP-omplete [4℄. Throughout this setion, we let X� denote X�22.The next lemma explains how we an retain independent set harateristis of theproblems after transformations.Lemma 3.1. Let G = (V;E) be a graph, and u; v be two adjaent verties in G,so that all neighbors of u besides v are also neighbors of v. Let G0 = (V 0; E0) be thegraph G after vertex v is removed. The size of the maximum independent set in G isequal to the size of the maximum independent set in G0.Proof. If vertex v is in a maximum independent set I, then none of its neighborsare in I. Thus I 0 = I [ fvg n fug is an independent set in G and in G0 of the samesize as I.Corollary 3.2. Let G 2 X� ontain the graph H in Fig. 3.4(a) as an induedsubgraph so that all verties exept for possibly v1; v2 and v3 have all of their neighborsin H. Then any instane (G, K) of MIS is equivalent to the instane (G0, K) of MISfor the graph G0 = G n fw1; w2g.Proof. By Lemma 3.1, we an remove w1 from the graph sine all neighbors ofx1 are neighbors of w1 as well. The redued graph is illustrated in Fig. 3.4(b). Againusing Lemma 3.1, we an remove w2 sine it overs all neighbors of x2. Note thatwe an apply the same transformation to add verties w1 and w2 to the graph inFig. 3.4().The following lemma desribes how edges of a graph an be replaed by paths,while preserving independent set harateristis.



Finding dense bloks of a sparse matrix 7
Fig. 3.1. Enlargement operation for K = 1Lemma 3.3. Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. LetGe;k be the graph G with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vjwhere k 2 Z+ and wi are new verties not in the original graph. Then there exists anindependent set of size K in G if and only if there exists an independent set of sizeK + k in Ge;k.Proof. We present the proof for k = 1, and the result follows by indution.SuÆieny: Let I be an independent set in G, then either vi 62 I or vj 62 I. Withoutloss generality, assume vi 62 I, then I 0 = I [ fw1g is an independent set in Ge;k.Neessity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, thusI = I 0 n fw1g is an independent set in G. Symmetrially, if w2 2 I 0, then vj 62 I 0,thus I = I 0 n fw2g is an independent set in G. If w1; w2 62 I 0, then I = I 0 n fv2g is anindependent set in G.Theorem 3.4. Problem MNDB is NP-omplete for 2� 2 bloks.Proof. As disussed in the previous setion, the problem of �nding maximumnumber of nonoverlapping dense bloks in a sparse matrix an be redued to theproblem of �nding a maximum independent set in the intersetion graph of the ma-trix, and thus is in NP. For the NP-ompleteness proof we use redution from theindependent set problem on ubi planar graphs, whih is NP-omplete [4℄. We �rstuse Theorem 2.3 to embed a ubi planar graph onto a grid. Then we transform theembedded graph so that it is in X�. Our transformations preserve independent setharateristis so that an independent set in the transformed graph an be translatedto an independent set in the original graph. Finally, we use Lemma 2.1 to relate theindependent set problem on a graph in X�, to the MNDB problem, and onlude theMNDB problem is NP-omplete.Our transformations are loal, so we �rst enlarge the grid to make room for thesetransformations. The enlargement operation inserts K new grid points between twogrid points in the original. An example is illustrated in Fig. 3 for K = 1. After theenlargement, eah edge is now replaed by a path of K verties (whih we distinguishfrom the original verties by alling themmarks). Two adjaent verties in the originalgraph are now at a distane K +1, whih generates a K �K area around eah vertexfor loal transformations. In this proof, it is suÆient to use K = 100.We an break down our transformations into 2 steps. The �rst step guaranteesthat the transformed graph is in X�. For this purpose, we need to have an edgebetween all pairs of verties for whih the orresponding bloks overlap so that thegraph is in X�, and we need to insert verties into the graph if neessary so thatthe losure property is satis�ed. The seond step makes sure that eah edge in theoriginal graph is replaed by an even-length path after the orthogonal embedding and
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vij vij+1

vi−1j vi−1j

vij+1Fig. 3.2. Bend transformation
Fig. 3.3. T-juntion transformationtransformations. Then we have suessfully transformed the independent set problemon the ubi planar graph to an independent set problem on a graph inX�, and we anonlude the NP-ompleteness of the MNDB problem using the result of Lemma 2.1.We need to onsider two ases for the �rst step. One is a bend neighborhood asillustrated in Fig. 3.2, and the other is a T- juntion. As illustrated in Fig. 3.3 a T-juntion is just a neighborhood of a vertex in the original graph. Notie that the onlyremaining ase is a path of verties, whih does not ause any problems. Consider abend vij onneted to two other marks vi�1j and vij+1. Note that vij annot be avertex in the original graph, sine the original graph is ubi. In a graph in X�, theremust be and an edge between vi�1j and vij+1. We an remove vij , and onnet vi�1jand vij+1 as in Fig. 3.2.Now onsider a T-juntion with vertex vij at the enter, as illustrated in Fig. 3.3.The neighborhood of vij is omposed of (up to a rotation) vij�1, vij+1, and vi�1 j ,none of whih is a vertex in the original graph. As in the ase of a bend, the problemhere is the absene of edges between vij�1 and vi�1 j , and between vi�1 j and vij+1,for whih the assoiated bloks will overlap. Also observe that vij must be a vertexof the original graph, and annot be eliminated. We an make the transformationillustrated in Fig. 3.3, yet the resulting graph is still not in X�, sine it has missingverties, and does not satisfy the losure property. We an use Corollary 3.2 to addverties to the graph as depited in Fig. 3.4, so that the resulting graph is in X�.By Lemma 3.3, we need eah path replaing an edge of the planar graph to beof even length. For eah edge going through an odd number of marks we know thatthere is a straight line segment going through at least 7 marks, due to the initialenlargement. We an replae this 7 vertex segment with an 8 vertex segment, toguarantee that the path representing an edge is of even length. This transformationis illustrated in Fig. 3.5. After this step, we have a graph in X� that replaes eahedge in the original graph with an even length path.Notie that all our transformations require polynomial time and spae, thus the
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Fig. 3.5. Odd-to-even length transformation to preserve independent set harateristis.size of the �nal embedded graph is polynomial in the size of the original graph.This redues the independent set problem for ubi planar graphs to an indepen-dent set problem in a graph in lass X�. By the result of Lemma 2.1, we know theindependent set problem on a graph in X� is equivalent to a MNDB problem in amatrix. Thus we redued the independent set problem for ubi planar graphs to theMNDB problem, whih onludes our proof.Our proof serves as a template to prove NP-ompleteness of alternative substru-tures. Below, we generalize our result for arbitrary m � n bloks. In Setion 5, wewill use the same template to prove NP-ompleteness of the MNS problem for rossbloks.Theorem 3.5. Problem MNDB is NP-omplete for m � n bloks for m;n > 2.Proof. The redution is again from the independent set problem on 3-planargraphs, and our proof uses only a minor modi�ation to the proof of Theorem 3.4.Given a 3-planar graph GP , we use exatly the same transformation as in Theorem 3.4,so that we have a graph G = (V;E) 2 X�22. What we need a is a graph in X�mn.We will map verties and edges G, whih is on an (M � m + 1) � (N � n + 1) grid,onto an [(M � m + 1)(m � 1) + 1℄ � [(N � n + 1)(n � 1) + 1℄ Xmn grid to attainG0 = (V 0; E0) 2 X�mn. Our mapping strethes the graph so that overlaps of m � nbloks are minimal. That is bloks on the same row (olumn) overlap at m�1 (1�n)bloks if they overlap. All other bloks overlap at 1 � 1 bloks at most. Eah vertexin V 0 is an image of a vertex in V , so that vij 2 V is mapped to the vertex position(i � (m � 1); j � (n� 1) in G0. Similarly, all edges in E0 are images of edges in E, so



10 V. Vassilevska and A. Pinarthat two verties in V 0 are onneted if and only if ounterparts are onneted in G.The two graphs G and G0 are essentially the same, thus an independent set onone an be trivially translated to an independent set on the other. Also G0 2 X�mn,sine it ontains edges for all potential overlaps. This onludes that the independentset problem on a 3-planar graph an be translated to an independent set problem ona graph in X�mn, and thus the MNDB problem on a sparse matrix.4. ApproximationAlgorithms. In this setion, we present a 2=3-approximationalgorithm for the MNDB problem for 2 � 2 bloks. Now that we know the problemis NP-omplete, we have to resort to heuristis for a fast and e�etive solution. Re-member that our motivation for investigating this problem is speeding up sparsematrix-vetor multipliation. Our methods will be used in a preproessing phase,thus they must be fast, for their ost to be amortized by the speedup in subsequentsparse matrix-vetor multipliations.Berman et al. [2℄, propose an approximation algorithm for square bloks, whihuses the Lipton-Tarjan planar separator algorithm to get a (1 � �)-approximation,where � = O(1=pÆlogM ) in O(n1+Æ) time, for any Æ > 0, where M is the size of anoptimal solution. Baker [1℄ gives an (k�1)=k-approximation, whih uses O(8kn) timeand O(4kn) spae.Below we propose a greedy approah for the 2 � 2 ase, whih in the 1=2-approximation ase is appliable to general m � n retangular bloks. Unlike thetwo algorithms ited, due to its greedy nature it is simple and very easy to imple-ment. It is pass-eÆient, and takes time and spae linear in the number of bloks ofthe matrix, with very small onstant fators in the bounds.First note that an easy 1=2-approximation to the MNDB problem with 2 � 2,whih runs in linear time in the number of bloks, is ahieved by �nding the leftmostblok in the topmost row, adding it to the urrent independent set, and then repeatingthe same operation after removing this vertex and all its neighbors. Note that at mosttwo of the verties an be independent among those removed from the graph, thuswe have a 1=2-approximation algorithm. In this setion we show how to improve thisapproximation result by looking at an extended neighborhood of the leftmost vertexin the uppermost row. Our algorithm is based on hoosing a set of verties in theneighborhood of the leftmost vertex in the uppermost row, so that the size of this setis no less than 2=3 of a maximum independent set in the indued subgraph of thoseverties removed from the graph. Clearly this generates a �nal solution that is 2=3 ofthe optimal, sine all greedy deisions are at least 2=3 of the loal optimal. Note thatthe resulting graph after removing a vertex along with all its neighbors still has theharateristis of the original as proven in Lemma 2.2Our deision proess BinTreeDeision is depited as a binary deision tree inFig. 4.1. In this tree, internal nodes indiate onditions, and the leaves list the vertiesadded to the independent set. We present the pseudoode of the algorithm below.
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12 V. Vassilevska and A. Pinaronstant time to �nd the urrent leftmost vertex on the uppermost row.Lemma 4.2. The size of the maximal independent set returned by AlgorithmMNDB-APX is no smaller than 2=3 of the size of maximum independent set on theintersetion graph.Proof. The proof is based on ase by ase analysis. We show that BinTreeDei-sion(v) of Fig. 4.1 always returns an independent set S suh that N (S) ontains noindependent set larger than 1:5 jSj, where N (S) denotes the neighborhood of S, i.e.,the set of verties in S or adjaent to a vertex in S. Below we examine the binarysearh tree ase by ase:. v5 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v5 2 Vv1 62 V By the losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the losure property u1 62 V . In this ase, if one of v9 orv8 is not in V , then S = fv5; v6g, sine their neighborhoodhas MIS size at most 3. Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N(S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N(S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N(S) has MIS size at most 3.v3 62 V S = fv; v7g, and N(S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N(S) has MIS size at most 3.v2 62 V By the losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a lique, and the MISis of size 1.v7 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the losure property u1 62 V , and if one of v8 or v9 isnot in V , then S = fv1; v5g, and N(S) has a MIS size atmost 3. Otherwise if v8; v9 2 V , then S = fv; v7; v8; v9g,and N(S) has MIS size at most 6.Theorem 4.3. Algorithm MNDB-APX is a linear time, 2=3-approximation al-gorithm for the MNDB problem.Proof. Follows diretly from Lemma 4.1 and Lemma 4.2.Generalization of our 2/3-approximation algorithm for larger bloks is still underinvestigation. We expet the runtime and the approximation ratio to depend on theblok size.5. Alternative Substrutures. We have so far foused our disussions on �nd-ing dense retangular bloks in a matrix. In this setion, we will disuss generalizationsof our results to alternative substrutures that might be exploited to improve memoryperformane. We will �rst disuss diagonal bloks. Then we will introdue a rosssubstruture and its variants, and prove that MNS problem is NP-omplete for �ndingthese substrutures.5.1. Diagonal Bloks. In many appliations, nonzeros of the sparse matrix arelined around the main diagonal in the form of long diagonals. This makes diagonal
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(c)(b)(a)Fig. 5.1. Matrix rotations. (a) the original matrix, (b) after Rotation 1, () after Rotation 2.bloks a nie alternative to retangular bloks. We de�ne a diagonal blok as follows.Given an M �N matrix A = (a(i; j)), we say d(i; j) is an m� n diagonal blok in Ai� 8k; l; i � l < i+m; 0 � k < n; a(l + k; j + k) 6= 0:To �nd diagonal bloks in a sparse matrix, we an rotate the diagonals to trans-form diagonal bloks to retangular bloks, so that our results for retangular bloksan be applied diretly. Our rotation is depited in Fig. 5.1, and we de�ne it as follows.Rotation 1: Given an M �N matrix A, its rotated matrix AR is an M +N � 1�Nmatrix so that A(i; j) 6= 0 i� AR(i+ N � j � 1; j) for 0 � i < M and 0 � j < N .Theorem 5.1. Given matrix A, let A1 be its rotated matrix under Rotation 1.d(i; j) is a diagonal blok in A, i� d(i+ N � j � 1; j) is a retangular blok in A1.Proof. Neessity: Let d(i; j) be a diagonal blok in A. By de�nition of a diagonalblok, and de�nition of Rotation 1, after transformation, we will have8k; l; i � l < i +m; 0 � k < n; A1(l +N � j � 1; j + k) 6= 0=) 8k; l; 0 � l < m; 0 � k < n; A1(i+ N � j � 1 + l; j + k) 6= 0:Thus d(i+N � j � 1) is an m � n retangular blok in A1.SuÆieny: Let d(i + N � j � 1; j) be an m � n retangular blok in A1. Thismeans before Rotation 1 we had,8k; l; 0 � l < m; 0 � k < n; A(i +N � j � 1� N + j + 1 + l + k; j + k) 6= 0=) 8k; l; i � l < i +m; 0 � k < n; a1(l + k; j + k) 6= 0:Thus d(i; j) is an m � n retangular blok in A.Corollary 5.2. Given a matrix A and a positive integer K. The problem ofdeiding if A has at least K nonoverlapping diagonal bloks is NP-omplete.Corollary 5.3. Algorithm MNDB-APX is a linear time 2=3-approximationalgorithm to �nd maximum number of nonoverlapping diagonal bloks.



14 V. Vassilevska and A. Pinar0� xx x xx 1A 0� x xxx x 1A 0� x xxx x 1A(a) (b) ()0� x xxx x 1A 0� xx x xx 1A 0� xx x xx 1A(d) (e) (f)Fig. 5.2. (a) Cross blok, (b) diagonal ross blok, (){(f) jagged ross bloks5.2. Cross Bloks. Various regular substrutures in a sparse matrix an beexploited to improve memory performane of sparse matrix omputations. One pos-sibility is the ross bloks depited in Fig. 5.2(a). We will identify a ross blok withits enter, that is we say (i; j) is a ross blok in a matrix A i� A has nonzeros atpositions (i; j), (i; j � 1),(i � 1; j), (i; j + 1), and (i + 1; j). Below, we prove that�nding a maximum number of nonoverlapping ross bloks is NP-omplete by usingour proof of Theorem 3.4 as a template.Theorem 5.4. Given a matrix A and a positive integer K. The problem ofdeiding if A has at least K nonoverlapping ross bloks is NP-omplete.Proof. It is easy to see that this problem an be redued to the independent setproblem, and thus it is in NP. For the NP-ompleteness proof we use a redution fromthe independent set problem on ubi planar graphs. First we use Theorem 2.3 toembed the ubi planar graph onto a grid and then enlarge the grid by 20 as we did forthe proof of Theorem 3.4. We an replae eah vertex on this grid with a ross patternin the matrix. Formally, for an M � N grid, we de�ne a 2M + 1 � 2N + 1 matrix,where grid point (i; j) is replaed by a ross entered at (2i+1; 2j+1) in the matrix.A does not have any other nonzeros besides those in ross bloks orresponding tovertex points. Observe that there are no ross bloks in A, besides those representinggrid points. Also observe that unlike the ase for retangular bloks, bends and T-juntions do not ause any problems, sine the ross to the left and below the ornervertex of a bend do not overlap.The only problem is to make sure eah edge in G is replaed by an even lengthpath. For this purpose we use the transformation illustrated in Fig. 5.3. Observe thatthis transformation replaes a hain of odd length with a hain of even length, andonsequently making sure of edges in G are replaed with even length paths.We an use matrix rotations to redue the problems of �nding other bloks inFig. 5.2(b{f) to the problem of �nding ross bloks as in Fig. 5.2(a). For instane,Rotation 1 transforms jagged rosses, whih are illustrated in Fig. 5.2() to regularrosses.Theorem 5.5. Given matrix A, let A1 be its rotated matrix under Rotation 1.(i; j) is a diagonal ross blok in A, i� (i + N � j � 1; j) is a ross blok in A1.Proof. The proof only requires applying Rotation 1 to the de�nition a ross blokas for the proof of Theorem 5.1.Corollary 5.6. Given a matrix A, and a positive integer K. The problem of
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Fig. 5.3. Odd- to even-length path transformation for ross bloks.deiding if A ontains at least K nonoverlapping jagged ross bloks is NP-omplete.Similar transformation operators an be transformed for variations of the jaggedross blok in Fig. 5.2(d{f). Now we introdue a new rotation operator to transformdiagonal ross bloks of Fig. 5.2(b) to regular ross bloks. This rotation is depitedin Fig. 5.1 and below we de�ne it formally.Rotation 2: Given an M � N matrix A, its rotated matrix AR is an M + N � 1 �M + N � 1 matrix so that A(i; j) 6= 0 i� AR(i� j +N � 1; i+ j) for 0 � i < M and0 � j < N .Theorem 5.7. Given matrix A, let A2 be its rotated matrix under Rotation 2.(i; j) is a diagonal ross blok in A, i� (i+N � 1� j; i+ j) is a ross blok in A2.Proof. The proof only requires applying Rotation 2 to the de�nition a ross blok.Corollary 5.8. Given a matrix A, and a positive integer B. The problem ofdeiding if A ontains at least B nonoverlapping diagonal ross bloks is NP-omplete.Observe that a greedy algorithm that hooses the leftmost blok in the uppermost row will yield a 1/2 approximation algorithm for �nding ross bloks, and all itsvariations.6. Open Problems. This work studies a new problem for the sparse matrixomputations ommunity, and brings forth many open problems. One interestingfamily of problems is the design of heuristis for larger bloks and di�erent substru-tures, and developing better approximation algorithms. As we disussed in Setion 4,our 2/3-approximation algorithm might be generalized for larger bloks, where theruntime omplexity will depend on the blok size. Another interesting question is ifit would be possible to improve the approximation ratio by looking at a larger neigh-borhood of the leftmost vertex of the uppermost row. Finally, di�erent substruturesrequire di�erent heuristis. For instane the neighborhood struture of the ross blokis fairly di�erent than that of the retangular blok, and thus our 2/3-approximationalgorithm annot be applied diretly.



16 V. Vassilevska and A. PinarAnother approah to redue memory indiretions is replaing strutural nonze-ros of the matrix with numerial zeros. As shown in [10℄, by seletively replaingstrutural zeros with numerial zeros, it is possible to gain signi�ant speedups dueto better memory performane, even though the number of oating point operationsinrease. This tehnique alls for another interesting ombinatorial problem. In thisase, we need to hoose bloks to make sure all nonzeros are overed, and we try todo this by using as few bloks as possible. We all this problem the minimum blokover problem, and de�ne it as follows.Given a sparse matrix A, and an oriented substruture �, plae min-imum number of substrutures on A, so that all its nonzeros areovered.Notie that this problem is a overing problem, whereas the maximum nonoverlap-ping substrutures problem was an independent set problem. However, the relationbetween the two problems is not as lear as the relation between the independent set,and vertex over problems on graphs.Finally, in this paper we onsidered �nding only one spei�ed struture in thematrix. However it is possible to split a matrix into three or more matries (e.g.,A = A2d + A1d + As, so that eah matrix ontains a di�erent substruture. In suh adeomposition, the objetive will be minimizing the total number of bloks in all ma-tries. Clearly, this problem is muh harder, and even good approximation algorithms(provably or pratially) will be valuable.7. Conlusions. We studied the problem of �nding maximumnumber of nonover-lapping substrutures in a sparse matrix, whih we alled the maximum nonoverlap-ping substrutures problem. Suh substrutures an be exploited to improve memoryperformane of sparse matrix operations by reduing the number of memory indire-tions. We foused on m�n dense bloks as a substruture (maximumnonoverlappingdense bloks problem) due to their availability in sparse matries arising in various ap-pliations, and e�etiveness in dereasing extra load operations. We investigated therelation between the maximum independent set problem and the maximum nonover-lapping substrutures problem, and de�ned a lass of graphs where the independentset problem is equivalent to the maximum nonoverlapping dense bloks problem. Weused this relation to prove the NP-ompleteness of the maximumnonoverlapping densebloks problem. Our proof used a redution from the maximum independent set prob-lem on ubi planar graphs and adopted orthogonal drawings of planar graphs. Wealso presented an approximation algorithm for the maximum nonoverlapping densebloks problem for 2�2 bloks. Our algorithm require only linear time and spae, andgenerate solutions whose sizes are within 2=3 of the optimal. We also desribed a 1/2approximation algorithm that work for larger bloks and di�erent substrutures. Wedisussed generalizations of our results to di�erent substrutures and observed the re-lation between diagonal bloks and retangular bloks to show that the two problemsare equivalent and one an be redued to the other by a matrix transformation. Wealso disussed ross bloks and proved that MNS problem is NP-omplete for rossbloks. REFERENCES[1℄ B. Baker, Approximation algorithms for NP-omplete problems on planar graphs, Pro. 24thIEEE Symp. on Foundations of Computer Siene (1983), pages 265{273.[2℄ F. Berman, D. Johnson, T. Leighton, P. Shor, L.Snyder, Generalized planar mathing, Journalof Algorithms 11, (1990), pages 153{184.
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